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Defining a relation for equilibrium pressure in a porous medium has been difficult to do in terms of readily
measurable parameters. We present a simplified analysis of this problem using the first law of thermodynamics
combined with a fractal description of a porous system. The results show that the variation in fluid interfacial
area with fluid volume, and the respective interfacial surface tensions, are dominant factors determining
equilibrium capillary pressure. Departures from equilibrium are seen to occur when fluid-solid contact lines are
in movement. By describing the pore space as fractal we are able to obtain an expression for the change in fluid
interfacial area with respect to its volume, and the resulting model shows a strong fit to pressure data obtained
from a capillary rise experiment conducted in a coarse-grained SiO2 sand.
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INTRODUCTION

Accurately predicting the movement and distribution of
fluids in a porous medium is a problem relevant to many
disciplines and requires knowledge of the pressure distribu-
tion of a fluid within the porous system. Considerable atten-
tion has been focused over the years on understanding such
pressures and, most recently, on how nonequilibrium capil-
lary pressures in porous media develop. Analyses by some
authors indicate a dependence of the capillary pressure on
the time rate change of moisture content within the system,
suggesting that departures from equilibrium are dependent
on the movement of fluid interfaces �e.g., �1–9��. However,
the resulting models are often difficult to apply to real sys-
tems without considerable simplification, and there is, as yet,
a need for more experimental data to fully establish the con-
ditions under which such pressures develop �10�.

Even the problem of defining an equilibrium pressure re-
lation for a fluid in a porous medium �such as would be
found in a capillary rise experiment� is difficult to do in
terms of readily measurable parameters. Work along these
lines has been based largely on analyses that define pressure
via changes in the free energy of the fluid/media system with
respect to its volume. Interfacial area has been shown to be
particularly relevant �e.g., �11–13��, and a recent paper by
Cheng et al. �14� has demonstrated the connection between
fluid interfacial area in a porous system and capillary pres-
sure by measuring both directly.

In the present work, we extend the thermodynamic dis-
cussion of equilibrium capillary pressure to a fractal medium
and consider the conditions under which interfacial area will
be the dominant determining factor. We derive such a rela-
tion using the first law of thermodynamics applied to a fluid
element that distributes itself within a region of a porous
medium through a quasistatic process. By describing the
pore space as a fractal, we are able to express the change in

fluid interfacial area with respect to volume and achieve a
closed-form result for capillary pressure that can be fit to
data obtained from a capillary rise experiment conducted in a
coarse-grained SiO2 sand. The pore space of such media is
known to exhibit fractal properties �e.g., �15��. The analysis
also shows that nonequilibrium capillary pressures will occur
when fluid-solid contact lines move within the region of in-
terest and indicates a dependence on the velocity of move-
ment as well as the degree of media saturation.

EQUILIBRIUM FLUID PRESSURE IN A POROUS MEDIUM

Consider an element of wetting fluid that enters a region
of porous media under pressure pw and distributes itself by
displacing a nonwetting fluid that is at pressure pn. Let A be
the interfacial area of the fluid �m2�, Ap be the projected
interfacial area of the fluid within a representative elemen-
tary volume �m2�, F be the force on the fluid-solid contact
line per unit of its length per unit of its velocity �kg/m s�, F
be the magnitude of the force on the fluid-solid contact line
per unit of its length per unit of its velocity �kg/m s�, g be the
gravitational constant �m/s2�, L be the primary fractal length
scale �m�, Pc be the capillary pressure �kg/m s2�, pn be the
pressure in the nonwetting fluid �kg/m s2�, pw be the pres-
sure in the wetting fluid �kg/m s2�, r be the pore radius �m�,
S be the entropy of fluid �J/K �, sv be the volume shape factor
for wetting fluid in contact with the respective nonwetting
phase, sv be the volume shape factor for wetting fluid in
contact with the respective nonwetting phase, T be the fluid
temperature �K�, U be the internal energy of the fluid �J�,
REV be the representative elementary volume over which
pressure is defined, Vw be the volume of the wetting fluid
�m3�, Vn be the volume of the nonwetting fluid �m3�, Vp be
the pore volume within a REV �m3�, VREV be the volume of
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a representative elementary volume �REV� �m3�, � be the
velocity of the fluid-solid contact line in a REV �m/s�, � be
the magnitude of the contact line velocity within a REV
�m/s�, � be the total contact line length per unit of projected
area �Ap� in a REV �1/m�, � be the fractal scaling factor,
�water,air be the interfacial energy of the water/air boundary
�J /m2�, �water,solid be the interfacial energy of the water/solid
boundary �J /m2�, �w,i be the interfacial energy of the wetting
fluid in contact with the ith nonwetting phase �J /m2�, �water

be the density of water �kg/m3�, and � be the wetting fluid
content of the media �mfluid

3 /mmedia
3 �.

We adopt the convention that fluid pressure is defined as a
quantity averaged over a representative elementary volume
�REV� within the soil matrix �16�. Assuming that the surface
tensions of the fluid interfaces are functions of temperature
only and that the system is taken to be the region occupied
by the wetting fluid, then for a constant porosity medium the
first law can be written using a control mass formulation,

U� = TS� − pwVw� − pnVn� + � �w,iAw,i� + ��F · �Ap�	 . �1�

Here work done by the system is taken to be positive and the
primes indicate the derivative with respect to time. The last
term on the right considers the work done per unit time to
move the fluid-solid contact line. �Fig. 1.� Here F is the force
exerted by/on the contact line per unit of its length per unit
of its velocity, � is the contact line length per unit of fluid
projected area, Ap, � is the velocity of the fluid-solid contact
line with � its magnitude, and the average is performed over
the REV; see the Appendix. The summed terms account for
work corresponding to changes in the interfacial area of the
fluid �e.g., �19��, with “w” indicating the wetting phase and “
i” the nonwetting phases �i.e., solid matrix or nonwetting
phase being displaced�. We consider an isothermal, quasi-
static process where fluid entropy and internal energy can be
considered to be constant. Such a process would approximate
a slow capillary rise experiment conducted at constant tem-
perature. Then, Eq. �1� can be reduced to

�pn − pw�Vw� = − � �w,iAw,i� − ��F ·�Ap�	 , �2�

where we have made use of the fact that Vw� =−Vn�. At the end
of that process �when �=0�, this can be rearranged to give

Pc = − � �w,i��Aw,i/�V�U,S,T. �3�

Equation �3� shows that under this idealized model, the equi-
librium pressure within the fluid matrix is determined by the
change in interfacial areas with respect to fluid volume and
can be shown to be a function of the media’s saturation. Note
that the last term in Eq. �1� only plays a role when the fluid-
solid contact lines are in motion, a situation of obvious non-
equilibrium.

The result in Eq. �3� differs from that derived by Morrow
�12� in that no term for the interfacial energy of the nonwet-
ting fluid-solid interface is included. However, since we de-
fine the system as the region occupied by the wetting fluid
only, this term is rightly omitted. Equation �3� can also be
derived as a subset of the more general analysis of Hassani-
zadeh and Gray �8�. Note that the restriction of Eq. �3� to a
constant entropy process does not violate the condition that
spontaneous processes �of which soil wetting is one� proceed
toward higher entropy as this requirement pertains to system
and surroundings. Entropy within the system can be written
as

S� = Strans� + Sprod� , �4�

where Strans� results from heat and mass transfer into and out
of the system and Sprod� represents entropy production within
the system. The requirement that S�=0 stipulates a balance
between these terms, which then requires that the entropy of
the surroundings increase even if that of the system is con-
stant. Such a situation could well exist for isothermal, qua-
sistatic processes such as those found in a slow capillary rise
experiment.

In order to apply Eq. �3�, a relation is needed for deter-
mining the change in interfacial area with respect to fluid
volume, and this can be obtained for a medium whose pore
space exhibits fractal properties. A recent study by Bird and
Perrier �20� suggests a relation for the pore size in a fractal
system after T iterations,

r = �TL , �5�

where r is the characteristic size, L is the original length
scale, and � is a scaling factor. Correspondingly, the number
of such pores within a given set is

n = �L/r�D �6�

with D the soil fractal dimension �20�.
If we assume that “r” represents pore radius, then we can

take the interfacial area at a given scale to be 
sanr2 with
the corresponding pore volume 
svnr3, where sa and sv are
shape factors �e.g., 4� and 4/3�, respectively, for a spheri-
cal geometry�. If we assume that the interfacial areas Aw,i are
directly proportional to sanr2, then the derivatives in Eq. �3�
are easily obtained,

FIG. 1. Schematic of fluid-solid contact line, velocity, and re-
sultant force. �a� Schematic of the fluid-solid contact line for a
wetting fluid. �b� Schematic of the contact line and resultant surface
force acting on the solid. For equilibrium situations, F�ns,wn,ws� are
given by Young’s equation �17� and FR is the resultant force exerted
by the solid matrix �e.g., �18��. When the fluid-solid contact line is
in motion, viscous drag on the fluid-solid contact line will also be
present �e.g., �8��.
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��A/�V� = ��A/�r���r/�V�

= ��A/�r���V/�r�−1 = �sa/sv��2 − D�/�3 − D� �1/r�

= fw,i�2 − D�/�3 − D� �1/�TL� , �7�

where fw,i=sa /sv for the respective phase. For a situation
where water displaces air in a porous medium, Eqs. �3� and
�7� can be combined to give

Pc = − �fwater,air�water,air + fwater,solid�water,solid��2 − D�/�3 − D�

	�1/�TL� , �8�

which, like Eq. �3�, is a function of media saturation.

EXPERIMENTAL RESULTS

A capillary rise experiment provides an ideal mechanism
for testing Eq. �8�. Here fluid is drawn upwards from a satu-
rated region by the network of pores above it with the cap-
illary pressure increasing linearly with height above the satu-
rated level. At any given elevation, small pores fill first with
larger ones doing so if their capillarity can overcome the
tension in the fluid surrounding them. The size of the largest
pores filled therefore decreases with elevation above the
saturated region, which leaves an increasing fraction of the
pore space empty and results in a decrease in moisture con-
tent. For a fractal system, all the pores in a given set are then
either filled or empty at a specific capillary pressure. Corre-
spondingly, the value of Pc given by Eq. �8� increases as the
size of the largest pores filled, given by �TL, decreases. The
saturation of the media is defined as V /Vp=�svnr3 /Vp. Here
Vp is the total pore volume within a REV, V is the volume of
water within that pore space, and the sum runs from the
largest pore filled �defined by �TL� to the smallest, with “T ”
therefore being directly related to saturation.

An eight-day capillary rise experiment was performed us-
ing a 20–30 sieve SiO2 sand to obtain data on capillary
pressure-versus-media saturation. The sand was held in an
aluminum chamber with interior dimensions of
1.27 cm/20.3 cm/25.4 cm and the interior faces were
treated with a DowCorning silicon release compound in or-
der to render them hydrophobic. The only preparation of the
media was a thorough rinse with distilled water. Degassed,
distilled water was introduced from the bottom of the cham-
ber until a saturated region 5 cm deep was formed. The
chamber was sealed and allowed to equilibrate for 8 days at
a constant temperature of 25 °C. The fluid content within the
porous medium was measured, at 0.045 cm increments
above the saturated region, using neutron radiography as de-
scribed in Deinert et al. �21�.

Because the coefficients fw,i are difficult to determine for
nonidealized media, the factor �fwater,air�water,air

+ fwater,solid�water,solid��2−D� /L �3−D�, as well as � were de-
termined by fitting Eq. �8� to data from the capillary rise
experiment. Taking the natural log of both sides of Eq. �8�,
we get

ln�Pc� = ln��fwater,air�water,air + fwater,solid�water,solid��D

− 2�/L �3 − D�� − T ln��� . �9�

Here Pc is the data vector of capillary pressures obtained

experimentally, with T the corresponding fractal iteration
vector whose integer components range from 0 to the num-
ber of data points. A least-squares method was used in con-
junction with Eq. �9� to determine both �fwater,air�water,air

+ fwater,solid�water,solid��D−2� /L �3−D� and �.

DISCUSSION

Figure 2 shows a comparison of the data from the capil-
lary rise experiment along with the fit of Eq. �8�, which re-
produces the shape of the data curve with good fidelity. The
model predicts a higher capillary pressure at low saturation
then is shown by the data, however the 8-day capillary rise
may not have provided sufficient time for the system to come
to a true equilibrium. While the total interfacial area in the
fractal model goes to zero as V goes to zero, the derivative
�A /�V increases monotonically, which is consistent with the
experimental results obtained by Cheng et al. �14�. The spe-
cific entropy and internal energy of water change by 
0.1%
between 0.1 and 1 MPa at 25 °C �e.g., �25��. The capillary
rise experiment was conducted at this temperature, and for
the pressure ranges shown in Fig. 2 there would have been
virtually no change in these quantities, which is consistent
with the assumptions under which Eq. �8� was derived. The
strong fit of Eq. �8� to data also suggests that the pore space
of the media indeed exhibits fractal properties.

For steady moisture content, Eq. �1� indicates that fluid
pressure within a porous medium will be a function
Pc�U ,S ,T ,A ,V�. However, as with previous studies �e.g.,
�2–4,7,8��, Eq. �1� also suggests that movement of the fluid-
solid contact lines within a REV will effect the pressure re-
lationship. Indeed, if Pc�U ,S ,T ,A ,V� is taken to be the equi-
librium pressure function, then, under appropriate conditions,
Eq. �1� can be rewritten as

FIG. 2. Eight day capillary rise data and model fit. Data from an
8-day capillary rise experiment are shown along with the best fit of
Eq. �8� to those data. The model predicts a higher pressure at low
saturation then is shown by the data, however the 8-day capillary
rise may not have provided sufficient time for the system to come to
a true equilibrium.
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Pc = Pc�U,S,T,A,V� − ���/�t , �10�

where the second term on the right considers nonequilibrium
effects arising from forces acting on the fluid-solid contact
line during its movement �see the Appendix�, with � being
the moisture content of the media. As with Eq. �2�, the sec-
ond term on the right side of Eq. �10� represents the work
done in moving the total length of the contact line within a
REV, but it is now written in a form similar to those found by
previous authors �e.g., �9��. While departures from equilib-
rium pressure are commonly attributed to this term, they
would also be expected to occur if temperature gradients
were to exist within the system, or if fluid interfacial area
varied in time even while moisture content remained fixed.

APPENDIX

Forces that act on the fluid-solid contact line during its
movement will cause nonequilibrium effects. Since pressure
is defined as a quantity averaged over a REV �16�, it is
appropriate in Eq. �1� to also consider the average of the
energy required per unit time to move the contact line con-
tained within such a region. This quantity is equal to the
force exerted by/on the contact line times the velocity at
which it moves, averaged over the REV, and can be written
as ��F ·� Ap�	. Here � is the contact line length per unit of
projected fluid interfacial area within the REV, Ap, � is the
velocity of the fluid-solid contact line, � is the magnitude of
that velocity, and F is the force exerted by/on the contact line
per unit of its length per unit of its velocity �see Fig. 3�.

When � does not vary with position over the volume of
the integral, the work done per unit time in moving the fluid-
solid contact line may be written as ��F ·�	Ap�. If the cur-
vature of the menisci with the REV are constant, then by
conservation of mass Vw� =Ap� and Eq. �2� can be rewritten as

PcVw� = − � �w,iAw,i� − ��F · �	Vw� . �A1�

If the magnitude of the interfacial velocity does not vary
within the REV, then Eq. �A1� can also be rearranged to give

Pc = − � �w,i��Aw,i/�V�u,s,T − ��i · k/�i · k�	FVw� /Ap.

�A2�

Here i and k are the directions of the force exerted by/on the
fluid-solid contact line and the projected area vectors, respec-
tively �see Fig. 3� and where we have again made use of the
fact that Vw� =Ap�. Noting that the moisture content �
=Vw /VREV,Vw� can be written as VREV��� /�t�. The second
term on the right-hand side in Eq. �A2� can then be written
as VREV��� /�t���i ·k / �i ·k � 	F /Ap, which is positive when
�i ·k / �i ·k � 	 is positive and negative when it is negative �see
Fig. 3�. Hence, Eq. �A2� can be written

Pc = − � �w,i��Aw,i/�V�U,S,T − ���/�t , �A3�

where �= ��F /Ap
REVi ·k / �i ·k�dV�. More generally, if terms
for U� and TS� are not dropped from Eq. �1�, then

Pc = Pc�U,S,T,A,V� − ���/�t , �A4�

where Pc�U ,S ,T ,A ,V� is understood to be the equilibrium
capillary pressure. Equation �A4� is also obtained by Has-
sanizadeh and Beliaev �9� through a more general analysis.
The coefficient � takes into consideration the movement of
the fluid-solid contact line within a REV and would need to
be determined experimentally in all but the simplest of ge-
ometries.

Importantly, the parameter � indicates that � will have
some dependence on both media structure and moisture con-
tent. While the dependence of F on contact line velocity was
not specified in the above derivation, simulations have
shown that the force required to move a contact line through
a smooth capillary tube is 
� �1,22� and other studies have
obtained predictions of 
�x, with x ranging from 0.4 to 9/7
�23,24�. Experiments done to measure the change in force
required to move a capillary interface through glass beads
contained in a thin tube have shown a dependence 
�1/2 �2�.
As a result, it is likely that the second term on the right-hand
side of Eq. �2� will increase in magnitude for higher veloci-
ties, indicating that � will be correlated to �� /�t.

FIG. 3. Projected flow area. When the curvature of the menisci
within a REV is constant, the volume flow rate into or out of the
REV is given by �Ap, where the magnitude of the contact line and
interfacial velocities is assumed to be the same. The unit vectors
i , j ,k denote the directions of the force on the fluid-solid contact
line, the resultant force on the solid matrix, FR, and the direction in
which the projected area moves, respectively. For a wetting fluid,
the force on the fluid-solid contact line is in the direction of move-
ment for �� /�t�0 and resists the movement of the fluid-solid con-
tact line when �� /�t
0.
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